CLEMENTINE II: A DOUBLE ASTEROID FLYBY AND IMPACTOR MISSION

RONALD J. BOAIN

JET PROPULSION LABORATORY

CALIFORNIA INSTITUTE OF TECHNOLOGY

PASADENA, CA

WORKSHOP ON ADVANCED TECHNOLOGIES FOR PLANETARY INSTRUMENTS 28-30 APRIL 1993

SYNOPSIS AND OBJECTIVES

o JPL HAS ANALYZED AND DEVELOPED FOR SDIO A PRELIMINARY MISSION DESIGN FOR A DEEP SPACE MISSION TO FLYBY TWO NEAR EARTH ASTEROIDS, EROS AND TOUTATIS. AS A PART OF THIS MISSION, THE POSSIBILITY OF CARRYING AND DEPLOYING A PROBE TO IMPACT TOUTATIS WAS ALSO ANALYZED AND FOUND FEASIBLE. THIS MISSION IS A CANDIDATE FOR SDIO'S CLEMENTINE H.

o SDIO MISSION OBJECTIVES

- PROVIDE FOR SDIO A DEMONSTRATION OF AUTONOMOUS NAVIGATION TECHNOLOGY FOR CONTROLLING THE FLIGHT PATH OF A SPACECRAFT DURING A CLOSE ENCOUNTER WJTH TARGET ASTEROIDS
- DEPLOY A PROBE FROM THE SPACECRAFT ON APPROACH TO THE SECOND OF THE TARGET ASTEROIDS IN SUCH A WAY THAT THE PROBE IMPACTS THE ASTEROID AND THE CRATER IS IMAGED FROM THE PASSING SPACECRAFT
- PROVIDE IN-SPACE TESTS AND DENIONSTRATIONS OF NEW, ADVANCED TECHNOLOGIES UNDER DEVELOPMENT BY SDIO

O NASA MISSION OBJECTIVES

- OBTAIN THE FIRST IMAGES AND OTHER SCIENTIFIC MEASUREMENTS FROM A SPACECRAFT OF TWO IMPORTANT NEAR EARTH ASTEROIDS DURING A CLOSE FLYBY
- OBTAIN IMAGE CORROBORATION OF PRIOR EARTH BASED RADAR IMAGES OF TOUTATIS

HOW ACHIEVED?

- SPACECRAFT LAUNCHED ON A TRAJECTORY WHICH ENCOUNTERS BOTH EROS AND TOUTATIS.
- 0 CLOSE FLYBYS AT EACH ASTEROID FOR HIGH RESOLUTION REMOTE SENSING
- 0 A PROBE DEPLOYED ON APPROACH TO TOUTATIS, WHICH COLLIDES 15 TO 30 min. BEFORE SPACECRAFT CLOSEST APPROACH, CREATES A CRATER AND EJECTA CLOUD ESTIMATED CRATER DIAMETER: 3 TO 10 meters EJECTA SPEED NECESSARY TO REACH SPACECRAFT: 28 TO 56 m/s
- 0 HIGH RESOLUTION OF IMAGERY OF THE IMPACT CRATER, EJECTA CLOUD, NEW-FRESH MATERIAL DURING ENCOUNTER WITH VISIBLE, UV, AND IR CAMERAS
 - 3-meter SPATIAL RESOLUTION ON THE SURFACE
- 0 MASS SPECTROMETER AND DUST COLLECTOR/ANALYZER WILL MEASURE EJECTA PARTICLE SIZES, DISTRIBUTION, AND COMPOSITION DURING FLY-THRU

PROJECT ELEMENTS

- O CLEMENTINE 1 SPACECRAFT (BUILT BY NRL) MODIFIED AND AUGMENTED BY ADVANCED PROPULSION
 - DRY WEIGHT (including propulsion inerts) = 496 lbm
 - POWER SUBSYSTEM OUTPUT AT 1 AU = 280 watts
 - MAXIMUM ANGULAR ACCEL. W/ POINTING = 104.7 mrad/s/s
 - MAXIMUM DATA STORAGE @ 20 Mbps \quad 1.6Gbits
 - R3000 PROCESSOR
- o CLEMENTINE I OPTICAL SENSORS (BUILT BY LLNL)
 - HIGH RESOLUTION IMAGER AND LIDAR
 - UV/VIS IMAGER
 - NEAR IRIMAGER
 - LWIR IMAGER
- 0 LEAP PROJECTILE MODIFIED AND USED AS THE IMPACTOR PROBE
 - DRY WEIGHT ☐ 11.0lbm
 - WET WEIGHT = 22.7 lbm
 - ΔV CAPABILITY = 2000 m/s
- o TITAN I G LAUNCH VEHICLE
 - THROW WEIGHT CAPABILITY TO ORBIT = 3720 lbm
- o NASA's DEEP SPACE NETWORK FOR TRACKING

BRIEF MISSION DESCRIPTION

- o MAJOR MISSION EVENTS EARTH DEPARTURE :28 JULY -7 AUGUST 1995
 - DEEP SPACE MANEUVER :12 JANUARY 1996
 - EROS ENCOUNTER: 13 MARCH 1996
 - TOUTATIS ENCOUNTER: 4 OCTOBER 1996

0 EROS ENCOUNTER SUMMARY

- FLYBY SPEED (V∞) = 8.44 km/s
- MISS DISTANCE (\acute{b}) = 30.0 km
- PHASE ANGLE (Φ) = 119.4 deg
- MAX ANGULAR RATE (ω) = 281.3 mrad/s
- MAX ANGULAR ACCEL (α) = 51.4 mrad/s/s
- GEOCENTRIC DISTANCE = 0.90 AU
- HELIOCENTRIC DISTANCE = 1.13 AU

o TOUTATIS ENCOUNTER SUMMARY FLYBY SPEED (V∞)□17.8 km/s MISS DISTANCE (b) = 50.0 km

- PHASE ANGLE (Φ) = 20.2 deg
- MAX ANGULAR RATE (ω) = 355.6 mrad/s
- MAX ANGULAR ACCEL (α) = 82.1 mrad/s/s
- GEOCENTRIC DISTANCE = 0.21 AU I-IEL1OCENTRIC DISTANCE = 1.01 AU

Heliocentric ORBITS & TRAJECTORY

MISSION PERFORMANCE REQUIREMENTS

O TEN-DAY LAUNCH WINDOW PERFORMANCE REQUIREMENTS

EARTH DEPARTURE	LAUNCH ENERGY (km^2/s^2)	DECLINATION ASYMPTOTE (deg)	INJECTION ΔV (m/s)	DEEP SPACE ΔV (m/s)
07-28-95	6.40	-12.4	3502	1325
08-02-95	7.72	-11.9	3561	1265
08-07-95	9.32	-11.3	3631	1196

- O LAUNCH AV AND DEEP SPACE AV REQUIREMENTS VARY ACROSS THE LAUNCH WINDOW
 - INJECTION AV INCREASES WHILE DEEP SPACE AV DECREASES BY 129 m/s
 - CONSEQUENTLY, THE TOTAL DETERMINISTIC AV REMAINS CONSTANT AT 4827 m/s
- O STATISTICAL AV REQUIREMENTS DETERMINED FROM A PRELIMINARY NAVIGATION ANALYSIS: 83 m/s
- THE ONLY REMAINING POTENTIAL LIEN ON THE AV BUDGET IS THE PENALTY DUE TO GRAVITY LOSSES DURING THE EARTH ESCAPE MANEUVER: MULTIPLE BURNS AND A PHASING ORBIT CAN MITIGATE THIS LIEN
- 0 TOTAL AV REQUIREMENT ON THE SPACECRAFT FOR THE M SSION IS CONSERVATIVELY SELECTED AT 4827 + 123 = 4950 m/s

EROS ENCOUNTER TRAJECTORY

TRAJECTORY PLANE SCHEMATIC

AIMPLANE SCHEMATIC

- o Flyby Speed $(V\infty) = 8.44 \text{ km/s}$ o Miss Distance (b) = 30.0 km

- o Phase Angle (Φ) = 119.4 deg o Max Angular Rate (ω) = 281.3 mrad/s
- o Max Angular Accel (et) = 51.4 mrad/s/s

- o Aim Angie $(\Theta) = 33.3 \text{ deg}$
- o Initial Delivery Error Ellipse:
 - SMAA = 249.6 km (30)
 - -SMIA = 154.9 km (3σ)
 - $-\Theta$ -smaa = $-30.2 \deg$

TOUTATIS RADAR IMAGES

- 0 RADAR IMAGES OFASTEROID4179, TOUTATIS, WERE MADE DURING THE OBJECT'S RECENT CLOSE APPROACH TO'EARTH IN DECEMBER 1992
- 0 IMAGES REVEAL THE OBJECT TO BE TWO IRREGULARLY SHAPED, CRATERED BODIES ABOUT 4.0 BY 2.5 km in average diameter and probably connected to one another
- 0 FOUR FRAMES SHOWN IN THE PICTURE WERE OBTAINED ON DEC. 8,9,10, AND 13 WHILE THE ASTEROID WAS AN AVERAGE 4.0 MILLION KILOMETERS FROM EARTH; THE OBJECT APPEARS IN A DIFFERENT ORIENTATION WITH RESPECT TO THE EARTH ON EACH DAY
- 0 RADAR ILLUMINATION IN THESE IMAGES COMES FROM THE RIGHT OF THE FIGURE SUCH THAT PARTS OF THE OBJECT ARE IN SHADOW AND ARE NOT SEEN
- 0 THIS WORK WAS DONE BY A TEAM OF SCIENTISTS LEAD BY DR. STEVEN OSTRO OF JPL; RADAR OBSERVATIONS OF NEAR EARTH ASTEROIDS ARE FUNDED BY THE PLANETARY ASTRONOMY PROGRAM OF NASA'S OFFICE OF SPACE SCIENCE

TOUTATIS RADAR IMAGES

ILLUMINATION <

PRELIMINARY DESIGN FOR PROBE DEPLOYMENT/DELIVERY

015 min. Separation BETWEEN PROBE IMPACT AND SPACECRAFT CLOSEST APPROACH

- SUFFICIENT TIME FOR SMALL PARTICLES TO REACH SPACECRAFT
- SPACECRAFT AT 16000 km AT IMPACT; IMPOVES CHANCES OF EARLY DETECTION OF CRATER WITH HIGH RESOLUTION IMAGER
- IMPACT AND IMAGING EVENTS AFTER LAST SPACECRAFT TRAJECTORY CORRECTION MANEUVER (NOMINALLY AT E-0.5 hr)

01200 m/s ALLOCATED TO THE PROBE ACCELERATION MANEUVER TO SEPARATE IN TIME THE IMPACT FROM THE CLOSEST APPROACH

- SEPARATION MANEUVER OCCURS AT E-3.96 hr OR 1-3.71 hr
- TARGET ASTEROID SHOULD BE VISIBLE AT ≈3.0 mag
- THREE AUTONOMOUS MANEUVERS BY PROBE AT i -3.0, -2.0,-0.5 hr

TIME (hr)	$\Delta V (m/s)$	DELIVERY ACC.* (km)
-3.0	89.0	58.2
-2.0	8.1	5.7
"0.5	3.2	1.9

o 700 m/s CAPABILITY REMAIN FOR END-GAME GUIDANCE AND CONTROL

•DELIVERY ACCURACY IS THREE-SIGMA, SEMI-MAJOR AXIS OF AIMPLANE ELLIPSE

TOUTATIS ENCOUNTER

0 SUNLIT FACE ON APPROACH PROVIDES GOOD IMAGING OPPORTUNITY

o AT 36 µrad SPATIAL RESOLUTION FOR THE HI-RES IMAGER, THE CRATER CAN BE OBSERVED FOR ~7.5 sec YIELDING AN ESTIMATED 20 HI-RES IMAGES AT VARYING PHASE ANGLES

SUMMARY

- o ANALYSIS HAS IDENTIFIED A FEASILBLE AND INTERESTING TRAJECTORY TO ENCOUNTER TWO NEAR EARTH ASTEROIDS: EROS AND TOUTATIS
- o DEPLOYMENT OF A PROBE FROM THE SPACECRAFT TO IMPACT TOUTATIS MAY ALSO BE FEASIBLE WITH ADVANCED PROPULSION TO IMPROVE SYSTEM PERFORMANCE
- o THIS MISSION WILL PROVIDE AMPLE OPPORTUNITIES TO DEMONSTRATE AUTONOMOUS NAVIGATION AND OTHER TECHNOLOGY TESTS OF INTEREST TO SDIO
- o THJS MISSJON WILL PROVIDE NASA SCIENTISTS WITH THE SECOND CLOSE LOOK AT NEAR EARTH ASTEROIDS, CLEMENTINE I BEING THE FIRST WITH ITS FLYBY OF GEOGRAPHOS
 - EROS IS OF INTEREST AND UNIQUE BECAUSE IT IS THE LARGEST OF THE KNOWN NEAR EARTH ASTEROIDS
 - TOUTATIS WAS RECENTLY OBSERVED BY RADAR AND A SPACE MISSION TO ENCOUNTER IT WILL CORROBORATE PREVIOUS DATA
 - THE IMPACTING PROBE AND A PROPERLY INSTRUMENTED SPACE-CRAFT COULD WELL PROVIDE INFORMATION NORMALLY REQUIRING A RENDEZVOUS MISSION